Computer Quantistico

Computer QuantisticoLo sviluppo dei computer quantistici affonda le sue origini negli anni ’80. Fu allora che i ricercatori cominciarono ad intravedere la possibilità di creare un super elaboratore in grado di sfruttare le leggi della meccanica e della fisica quantistica per oltrepassare finalmente i limiti dei cosiddetti super computer, spalancando di fatto le porte ai nuovi e interessantissimi orizzonti dell’Intelligenza Artificiale. Ad oggi, sono già stati creati sistemi avanzati basati su pochi qubit (bit quantistici), ma la vera sfida di scienziati e ricercatori è realizzare computer quantistici basati su migliaia di qubit entro pochi anni. Soltanto questa condizione consentirebbe un vero e proprio “salto quantico” nella qualità dei calcoli che un computer riesce ad eseguire. In sostanza, stiamo parlando di sistemi contenenti infiniti qubit (e non i bit utilizzati dai computer che conosciamo), capaci di effettuare centinaia di migliaia di calcoli al secondo. Gli studi tuttora in corso fanno sapere che ci vorranno almeno dieci anni per raggiungere una maturità tecnologica tale da poter realizzare una macchina di questo genere. A contendersi la partita al momento sono Google, IBM, Intel e Microsoft, ma anche alcuni centri specializzati come quello di Harvard e il MIT (Massachusetts Institute of Technology), che si scontrano con le ingerenze di alcuni studi russi e cinesi. Di recente, anche l’Unione Europea ha finalmente deciso di investire nella ricerca, destinando un miliardo di euro per i prossimi dieci anni.

Cos’è e come è fatto un computer quantistico?

Bit e QubitTutti i computer che usiamo si basano sulla logica binaria. Ogni unità (il bit) prevede due possibilità di scelta (0 e 1) e tutte le informazioni offerte (più o meno complesse) vengono elaborate con una stringa di valori composta da tanti 0 e 1. Questo non è il caso del computer quantistico, che punta a sfruttare le diverse proprietà della fisica e della meccanica quantistica, consentendo al sistema di ragionare in maniera profondamente diversa dai computer precedenti e, quindi, non lineare. Il bit, infatti, è stato sostituito con il qubit, in grado di analizzare qualsiasi query o problema in maniera simultanea, anziché binaria. Il computer quantistico, pertanto, non funziona in parallelo e la sua rapidità non dipende da una mera questione di potenza, ma è legata semplicemente a un modo totalmente nuovo di elaborare le informazioni. Se gli attuali computer seguono le regole della fisica classica, questo non è il caso dei computer quantistici, i quali grazie alla fisica quantistica sarebbero in grado di processare informazioni che con gli attuali sistemi richiederebbero migliaia di anni. Non si tratta di una tecnologia che darà vantaggi in ogni ambito, motivo per il quale i computer tradizionali non verranno accantonati. Ciò nonostante, questo nuovo approccio lascia intravedere possibilità di applicazione enormi e, già attualmente, esistono settori nei quali il salto sembra molto interessante. Tra questi la chimica, la fisica, la farmaceutica e la crittografia. Per adesso, queste macchine sono ancora in fase embrionale, soprattutto dal punto di vista dell’hardware. Malgrado gli investimenti effettuati negli ultimi anni da molte aziende attive nel settore informatico, la sperimentazione procede ancora a tentoni. Il motivo principale sta nella mancanza degli standard e, soprattutto, nella scarsità di specialisti in grado di lavorarvi, essendo questi poche centinaia in tutto il mondo. Per capire come la scienza sia arrivata alla realizzazione dei computer quantistici è necessario tirare in ballo la Legge di Moore e la miniaturizzazione dei circuiti: a partire dagli anni ’60, si è assistito a un miglioramento progressivo della potenza di calcolo dei Pc, incremento legato a doppio filo con la parallela e costante miniaturizzazione dei circuiti elettronici da cui deriva anche la celebre Legge di Moore. Secondo questa regola, la complessità dei microcircuiti, misurata attraverso il numero di transistor presenti in un chip (il processore) e la conseguente velocità di calcolo, raddoppiano ogni 18 mesi. Tuttavia, questa legge oggi non risulta quasi più applicabile e il motivo principale sta nel raggiungimento dei limiti imposti dalla meccanica, che rendono molto più difficile che in passato proseguire sulla strada della miniaturizzazione. Limite questo, che in un certo senso ha spalancato le porte a un netto cambio di paradigma, basato sulla necessità di sfruttare le potenzialità della meccanica e della fisica quantistica, allo scopo di raggiungere una maggior potenza e fluidità di calcolo. Ed ecco che i bit sono stati sostituiti dai qubit, non codificati medianti i simboli 1 e 0, ma relativi allo stato quantistico in cui si trovano le particelle o gli atomi impiegati. Questi ultimi possono avere contemporaneamente valore 1 e 0, tra l’altro in una varietà di combinazioni tali da produrre milioni di stati quantistici differenti. Una condizione che assume significati vastissimi se pensata in relazione alla progressione matematica: 2 qubit possono avere ben 4 stati contemporaneamente, 4 qubit corrispondono a 16 stati, 16 qubit a 256 stati e così via fino a quantità che nessuno strumento elettronico attuale è in grado di immaginare. Grazie a questi sistemi le capacità di codifica si amplierebbero talmente tanto da poter processare informazioni estremamente complesse, come quelle che regolano l’Intelligenza Artificiale. In poche parole, un computer quantistico sarebbe capace di elaborare nello stesso momento, in virtù delle sue capacità di calcolo parallelo, diverse soluzioni per un singolo problema, anziché semplici calcoli sequenziali come avviene attualmente per i pc tradizionali.

Come funzionano i computer quantistici?

Entanglement QuantisticoPer il momento, a frenare gli scienziati che stanno lavorando a questi sistemi, è stata la manipolazione controllata degli atomi e delle particelle (finora realizzata con successo soltanto in presenza di pochi qubit ma mai per elaborazioni più complesse, che necessitano di centinaia o migliaia di qubit). La gestione degli atomi riguarda principalmente la loro comunicazione e connessione. Inoltre, è fondamentale uno sviluppo parallelo degli algoritmi dedicati. Il funzionamento di questi sistemi avanzati si basa essenzialmente su due delle leggi che regolano la meccanica quantistica:

  • il principio di sovrapposizione“, da cui ha origine la capacità delle particelle di trovarsi in più stati diversi contemporaneamente (dando la possibilità anche al qubit di poter essere sia 1 che 0 simultaneamente);
  • la correlazione quantistica” (entanglement), che indica il vincolo esistente tra due particelle e, in questo caso, due qubit; secondo tale principio, è possibile individuare lo stato di una particella (e di un qubit) osservando quella a cui è vincolata.

Dal punto di vista puramente pratico, il funzionamento dei computer quantistici prevede due approcci fondamentali:

  • il primo, che avviene attraverso il raffreddamento dei circuiti con il raggiungimento del cosiddetto zero assoluto (indicato con il valore di 0 gradi Kelvin, corrispondenti a -273,15 gradi Celsius). In questo modo i circuiti funzionano come conduttori senza alcuna resistenza che interferisca sulla corrente; in tal caso è possibile parlare di “punti quantici“, termine usato per indicare una nanostruttura dotata di uno speciale materiale semiconduttore, situata in un altro semiconduttore con un intervallo di energia più ampio;
  • il secondo metodo previsto, invece, ricorre ai cosiddetti ioni intrappolati, ovvero quegli atomi e molecole dotati di una carica elettrica e intrappolati in un campo elettromagnetico. Questi atomi vengono manipolati affinché il dislocamento degli elettroni sia in grado di produrre una trasformazione dello stato degli ioni e di conseguenza possa funzionare come qubit;

Seguendo tali principi, il computer quantistico è in grado di sfruttare i qubit per processare calcoli infinitamente complessi, a una velocità che attualmente risulta inimmaginabile (rispetto alle macchine odierne, sarebbero capaci di impiegare secondi anziché anni, garantendo risultati nettamente più affidabili). Come affermato in precedenza, esistono ancora molti ostacoli da superare, tra cui la manipolazione corretta delle particelle (particolarmente fragili e volatili, proprio perché soggette a cambiamenti di stato repentini), la creazione di infrastrutture hardware adeguate (attualmente per il raffreddamento di questi particolari sistemi viene impiegato l’elio e le macchine devono essere conservate in ambienti senza vibrazioni) e lo sviluppo di algoritmi espressamente dedicati al quantum computing.

La storia del computer quantistico

Murray Gell-Mann
Murray Gell-Mann

Il primo a pensare ad un computer basato sull’uso delle particelle elementari fu Murray Gell-Mann (cui fu assegnato il premio Nobel per la fisica nel 1969). Il fisico statunitense, nel 1982, aveva già intravisto la possibilità di sfruttare talune proprietà degli atomi per dar vita a una tipologia innovativa di scienza informatica. Richard Feynman raccolse le idee di Gell-Mann e introdusse il metodo della sovrapposizione degli stati delle particelle elementari. Tre anni dopo, nel 1985, David Deutsch dimostrò l’assoluta validità di queste indicazioni e lavorò per metterle in pratica. Nel 1998 fu realizzato il primo prototipo di computer quantistico. A rendere realtà le intuizioni dei colleghi che l’avevano preceduto fu il fisico Bruce Kane, che realizzò un elaboratore basato su atomi di fosforo disposti su uno strato di silicio spesso soltanto 25 nanometri. Nel 2001, IBM ha realizzato uno dei primissimi elaboratori quantistici a 7 qubit, mentre nel 2013 è stato presentato al pubblico il computer quantistico D-Wave. Nel 2016, dopo che IBM ha messo pubblicamente a disposizione il primo computer quantistico in modalità cloud (Quantum Experience, dotato di un processore a 5 qubit), il governo cinese ha lanciato in orbita il satellite Micius, il primo della storia ad usare standard di comunicazioni quantistiche, avviando di fatto una competizione serrata tra Cina e Stati Uniti. Nel 2017, IBM ha aggiornato i suoi elaboratori quantistici via cloud, dotandoli di processori a 16 e a 20 qubit. Il primato di IBM, tuttavia, è durato soltanto pochi mesi, poiché nel marzo del 2018 a strapparlo all’azienda informatica americana ci ha pensato Google, con il suo nuovissimo Quantum AI Lab, dotato di un processore Bristlecone a 72 qubit. Sempre nel marzo del 2018 l’Istituto di Fisica e di Tecnologia di Mosca ha lanciato una nuova affascinante sfida, presentando al mondo intero un articolo relativo agli sviluppi di una connessione Internet quantistica ad alta velocità, un’innovazione che aprirebbe scenari inimmaginabili.

Gli ambiti interessati: chimica, biologia, farmaceutica e crittografia

Quantum Computing e Blockchain
Quantum Computing e Blockchain

Le future applicazioni dei computer quantistici cominceranno laddove le macchine tradizionali non sono in grado di arrivare. I computer del prossimo futuro, infatti, puntano a risolvere problemi estremamente complessi, sia definendo simulazioni basate sulle regole della natura, sia velocizzando in maniera esponenziale le operazioni richieste. Scendendo più nel dettaglio, una delle applicazioni future che pare maggiormente alla portata del quantum computing sembra essere quella relativa al settore chimico-biologico. In questo caso, le simulazioni possono essere utili per comprendere meglio le possibili interazioni tra le molecole da impiegare nello sviluppo dei farmaci. In futuro, potremmo produrre in maniera più efficiente e aderente alle nostre esigenze prodotti quali medicinali e concimi. E per ottenere quanto appena detto potrebbero bastare processori costituiti da 100/200 qubit. Oggi, le macchine più evolute ed affidabili raggiungono i 70-75 qubit. Qualora si riuscissero a creare computer quantistici animati da migliaia di qubit, potremmo accedere a simulazioni e informazioni sempre più complesse e, quindi, ad ulteriori applicazioni in grado di abbracciare un gran numero di settori diversi. L’altro campo interessato dalle sperimentazioni è la crittografia, ovvero la tecnologia che consente di cifrare i messaggi rendendoli incomprensibili a tutti coloro che non sono in possesso delle chiavi che permettono di renderli leggibili.

Oltre che per cifrare meglio le proprie informazioni, i computer quantistici potrebbero essere anche lo strumento per svelare e decifrare i messaggi di eventuali vittime o avversari. In teoria, con questi sistemi sarebbe possibile persino “bucare” una blockchain, oggi praticamente inattaccabili con i computer tradizionali. Al momento, soltanto i governi e le più importanti aziende di ricerca hanno accesso ad applicazioni di questo tipo, ma è ovvio che nel prossimo futuro andrà messa in piedi anche una discussione relativa al tema delle competenze, onde evitare spiacevoli inconvenienti.

I computer quantistici di IBM e Google

IBM è stata una delle prime realtà ad aver investito nello sviluppo del Quantum Computing e nella realizzazione di computer quantistici generalisti ed accessibili a tutti. Oggi, sono disponibili sistemi da 20 qubit pronti all’uso e, a breve, anche macchine dotate di processori da 50 e più qubit. I sistemi IBM Q online dotati di processori da 20 qubit, a partire dall’anno in corso vedranno miglioramenti nella progettazione degli stessi qubit, oltre che nel packaging, nell’hardware e nella connettività. I tempi di coerenza (ovvero la quantità di tempo necessaria per eseguire i calcoli) si attestano attualmente sui 90 microsecondi. Oltre che per l’elevata velocità di calcolo, questi sistemi di nuova generazione si differenziano anche per un’eccellente affidabilità. Su quantità di qubit infinitamente più elevate si attestano i computer quantistici realizzati in collaborazione da NASA e Google, presso uno dei poli di sviluppo informatico più noti al mondo: il Quantum Artificial Intelligence Lab in California. Computer Quantistico D-WaveIl dispositivo realizzato più di recente prende il nome di D-Wave Two, un computer quantistico a 512 qubit derivato direttamente dal D-Wave, nato nel 2011 e dotato di un processore da 128 qubit. Il D-Wave Two è un computer quantistico in cui ogni qubit si presenta come un circuito superconduttore tenuto a temperature bassissime (circa -271 gradi Celsius), grazie all’impiego dell’elio e di alcuni dischi in rame che provvedono a schermare il sistema dalle interferenze elettromagnetiche e a dissipare il calore prodotto dalla macchina. Il problema principale che i computer quantistici sono chiamati ad affrontare riguarda l’ancora elevata percentuale di errore. Questi dispositivi funzionano a temperature bassissime e vanno schermati dall’ambiente circostante in quanto i bit quantistici usati attualmente risultano ancora molto instabili e ogni genere di rumore o cambio di temperatura può generare errori. Proprio per questo motivo, i qubit presenti nei processori quantistici non sono in realtà singoli qubit, ma spesso combinazioni di bit in grado di ridurre gli eventuali errori. Un altro fattore che limita la ricerca e la produzione di sistemi super intelligenti è relativo al fatto che la maggior parte di questi computer è in grado di conservare il proprio stato per meno di 100 microsecondi. I sistemi realizzati da Google hanno evidenziato tassi di errore ancora elevati, pari all’1% per quanto riguarda la lettura, allo 0,1% per i single-qubit e allo 0,6% nel caso delle porte a due-qubit. Ciascuno dei chip Bristlecone a basso errore realizzati da Google è munito di 72 qubit. Google, oltre che sui qubit, sta lavorando anche per migliorare la sincronizzazione di tutte le tecnologie presenti in un computer di questo genere (il software, l’elettronica di controllo e il processore stesso).

Il futuro dei computer quantistici

IonQ sta attualmente lavorando alla realizzazione di un computer quantistico che impiega il metodo degli ioni intrappolati. Secondo Christopher Monroe, fisico e fondatore di IonQ, la scienza si sta attualmente concentrando su due modelli distinti, ovvero i circuiti superconduttori (la strada percorsa da IBM e Google) e gli ioni intrappolati (sui quali sta lavorando il centro di ricerca di Harvard). Facendo delle comparazioni tra i due sistemi, Monroe è giunto alla conclusione che le prestazioni ottenute attraverso tali tecnologie siano molto simili. A fare la differenza, però, sarebbe il collegamento tra i qubit: tutti gli ioni intrappolati sono collegati fra loro mediante forze elettromagnetiche; nei circuiti superconduttori, invece, soltanto alcuni qubit sono connessi, condizione in grado di rallentare il passaggio delle informazioni. Sempre secondo Monroe, l’umanità potrà salutare la comparsa dei primi sistemi dotati di migliaia di qubit entro poco più di un decennio. Ovviamente, scienziati e ricercatori intuiranno meglio le possibili applicazioni man mano che questi sistemi verranno migliorati.